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1. Introduction

Structural fatigue can be predicted either in the time domain or frequency domain. In the time
domain, a large number of stress responses are simulated. Cycle counting methods are used to
identify damage events. It is generally accepted that the rainflow cycle counting method is the best
method to identify damage events of a broad-band random stress response. From the so-called
rainflow cycles, fatigue life can be obtained using Palmgren and Miner’s linear accumulative
damage rule. The time domain method is suitable for simple structures where only a few hot spots
need to be investigated. For large structures, computations become intensive. Fatigue analysis of
such structures generally uses frequency domain methods. In the frequency domain, fatigue life is
calculated from the power spectral density (PSD) of the stress response. Neither time history
samples of the stress processes nor a cycle counting procedure will be needed. The frequency
domain methods are much less computationally intensive than the time domain methods. This
paper proposes a frequency domain procedure to calculate the fatigue life of structures with
stationary non-Gaussian stress processes.

Stress processes can be classified as Gaussian or non-Gaussian in terms of their probability
density functions (PDF), narrowband or broadband in terms of their PSDs. Different frequency
domain methods have been proposed to predict fatigue life where the stress process has a different
see front matter r 2004 Elsevier Ltd. All rights reserved.
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combination of PDFs and PSDs. The simplest case is when the stress is Gaussian and
narrowband. When the stress process is non-Gaussian and broadband, the fatigue analysis
becomes much more difficult. Dirlik [1] proposed an empirical closed-form expression for the
PDF of rainflow ranges from extensive Monte Carlo simulations. Bishop and Sherratt [2] were
able to obtain a theoretical solution to the PDF of rainflow ranges using the Markov chain theory
after adopting a new definition of the rainflow range. Wirsching and Light [3] obtained the
correction factor for the fatigue prediction of narrow-band Gaussian processes as a function of
the spectral width parameter and the exponential coefficient of the S–N curve [3]. Lutes et al. [4]
suggested an adjustable bandwidth factor. Ortiz and Chen [5] adopted a new definition for the
adjustable bandwidth measure and proposed an empirical expression to calculate the optimum
order of moments involved. Tovo [6] showed that the rainflow damage is bounded and proposed
that it can be calculated as a linear combination of the two bounds. The formula obtained by
curve-fitting numerical simulation results gives accurate approximations of fatigue damage under
both broad- and narrow-band Gaussian loading. Winterstein [7] investigated the effect of the non-
Gaussianity in terms of kurtosis on the mean damage rate. Winterstein [8] further developed a
more accurate second order expression using an approximate Weibull distribution to fit the stress
range. Lutes and Wang [9] compared the accuracy of these approximations of the non-Gaussian
effect. Sarkani et al. [10] also found out that the non-normality can significantly influence the rate
of fatigue damage accumulation, from their analytical studies, as well as fatigue experiments on
welded cruciform specimens.

When the stress process is broadband and non-Gaussian, the fatigue analysis becomes very
complicated. Few formulas are available in the literature. Lutes et al. [4] suggested the use of two
correction factors for the Gaussian and narrowband assumption: a bandwidth correction factor
and a non-normality correction factor. The main contribution of the present paper is the
development of a methodology for fatigue prediction of structures with broad-band and non-
Gaussian stress response.

The remainder of the paper is organized as follows. In Section 2 we review the method we used
to simulate non-Gaussian time histories with a prescribed PSD function, and the adaptive kernel
method to estimate the distribution of rainflow ranges. In Section 3 a multi-stage regression
method is developed to obtain the PDF function for the rainflow stress ranges in terms of the
bandwidth and non-normality parameters of the stress process. We then validate the proposed
PDF model using new simulation data which are not used in the regression analysis. In Section 4
we show that the fatigue prediction using the proposed PDF model agrees well with simulations.
In Section 5 we conclude the paper with some remarks.
2. Preliminaries

2.1. Simulation of non-Gaussian processes

2.1.1. Probability distribution
A common technique for simulating a second-order non-Gaussian process X ðtÞ is by means of a

transformation gð�Þ of a standard Gaussian process UðtÞ with unit variance and zero mean,
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defined as [11]

X ðtÞ ¼ gðUðtÞÞ ¼ F�1
X ½F½UðtÞ��; (1)

where F½�� and FX ½�� are the cumulative distribution functions of the standard Gaussian and non-
Gaussian processes, respectively. The stress distribution of virtually any nonlinear structural
response can be matched by applying an appropriate monotonic transformation gð�Þ: Moreover,
gð�Þ can be approximated by a Hermite polynomial expansion [8],

X 0 �
X � mX

sX

¼ k U þ
XN

n¼3

anHn�1ðUÞ

" #
; (2)

where mX and sX are the mean and standard deviation of X ðtÞ; respectively. k is a scaling
factor ensuring that X 0ðtÞ has unit variance. HnðuÞ is the nth-order Hermite polynomial,
HnðuÞ ¼ ð�1Þn expðu2=2Þ ðdn=dunÞ expð�u2=2Þ: From here on, we will work with the
normalized stress process X 0ðtÞ since the original process X ðtÞ can be obtained from
X ðtÞ ¼ sX X 0ðtÞ þ mX :

As an example, we truncate Eq. (2) at N ¼ 4;

X 0ðtÞ ¼ k½U þ a3ðU
2 � 1Þ þ a4ðU

3 � 3UÞ�: (3)

The coefficients can be determined by matching the moments of X 0ðtÞ up to fourth order for a
symmetric distribution as

k ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6a2
4

q ; a3 ¼ 0;

a4 ¼
1

ð1þ 6a2
4Þ

2
ð3348a4

4 þ 1296a3
4 þ 252a2

4 þ 24a4 þ 3Þ: ð4Þ
2.1.2. Spectral distribution
The spectral properties of the process X 0ðtÞ can be captured by imposing an appropriate

correlation structure on the process UðtÞ: The correlation of X 0ðtÞ is related to that of UðtÞ by the
following expression for N ¼ 4:

RX 0X 0
ðtÞ ¼ k2

½RUU ðtÞ þ 2a2
3RUU ðtÞ

2
þ 6a2

4RUU ðtÞ
3
�; (5)

where RX 0X 0
ðtÞ and RUU ðtÞ are the correlation functions of X 0ðtÞ and UðtÞ: In this paper, we would

like to sample the PDF and PSD functions of the process X 0ðtÞ in a broad range and in a random
manner in order to develop a regression model that has an ability to generalize. For this reason,
we pick the corresponding correlation function RUU ðtÞ for the Gaussian process UðtÞ: Eq. (5) is
then used to calculate the correlation function RX 0X 0

ðtÞ:
In the numerical examples presented later, we consider the following spectral density function

of UðtÞ:

FUU ðoÞ ¼
F1

ðo2
1 � o2Þ

2
þ ð2B1o1oÞ

2
þ

F2

ðo2
2 � o2Þ

2
þ ð2B2o2oÞ

2
: (6)
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In the numerical examples, seven values of kurtosis of X 0ðtÞ are studied: a4 ¼ 4; 7, 10, 14, 17,
20, and 24. For each kurtosis, various PSD functions of UðtÞ are chosen in such a way that the
irregularity factor of the corresponding non-Gaussian stress process X 0ðtÞ assumes values ranging
from 0 to 1 with an increment of about 0:05: For each combination of kurtosis and irregularity
factor, 10 stress samples are simulated and each sample has 215 points. The simulated stress
samples are then put through the rainflow counting procedure to collect the rainflow ranges. For
each combination of kurtosis and irregularity factor, the number of rainflow range samples
collected is generally more than 100; 000:
2.2. Density estimation

The histogram of the rainflow ranges of a non-Gaussian stress process shows a long tail which
has a significant influence on the fatigue life prediction because the fatigue analysis involves higher
order moments of the rainflow ranges. It is therefore important to estimate the tail part of the
probability density function as accurately as possible. An adaptive kernel method is adopted in
this paper [12].

The adaptive kernel estimate bf ðsÞ of a probability density function f ðsÞ can be expressed as

bf ðsÞ ¼ 1

n

Xn

i¼1

1

lih
K

s � Si

lih

� �
; (7)

where li ¼ ½ ef ðSiÞ= �f �
�y is a local window width factor, y is the sensitivity parameter such that 0p

yp1; n is the total number of the sample data, h is the window width, Si are the sample data
0 5 10 15
0

0.5

1

1.5

2

2.5
(a)

0 5 10
0

0.5

1

(b)

0 2 4 6 8
0

0.5

1
(c)

0 2 4 6
0

0.2

0.4

0.6

0.8
(d)

Normalized rainflow range

PD
F

Fig. 1. PDF of the rainflow range. Solid line: estimates from the adaptive kernel method. Dashed line: the predictions

from Eq. (9). (a) a4 ¼ 20; r ¼ 0:355; m ¼ 0:215: (b) a4 ¼ 14; r ¼ 0:770; m ¼ 0:663: (c) a4 ¼ 7; r ¼ 0:659; m ¼ 0:49: (d)
a4 ¼ 4; r ¼ 0:905; m ¼ 0:863:
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points and Kð�Þ is a kernel function. ef ðsÞ is a pilot estimate of f ðsÞ and f is a geometric mean ofef ðsÞ: In this paper, we set y ¼ 1=2: The conventional kernel estimate when li ¼ 1 is used to
calculate ef ðsÞ: The kernel is chosen to be Gaussian.

Some typical plots of the estimate of the distribution of the rainflow ranges are shown in Fig. 1.
It can be seen that the adaptive kernel method not only captures the mode in the rainflow range
distribution but also gives a good approximation of the long tail.
3. Multi-stage regression of rainflow stress ranges

3.1. Choice of independent variables

Among many factors of the stress process affecting the fatigue, in this work, we consider the
following four: the standard deviation sX of the stress process, the mean frequency, the
irregularity factor of the PSD, and the kurtosis, a4; of the probability density. We further assume
that the PDF of the stress process is a symmetrical non-Gaussian distribution.

Let Zi denote the ith-order spectral density moment defined as

Zi ¼ 2

Z 1

0

oiFX 0X 0
ðoÞdo; (8)

where FX 0X 0
ðoÞ is the PSD of the stress process X 0ðtÞ: Note that Z0 ¼ s2

X : A common definition of
the irregularity factor r ¼ Z2=

ffiffiffiffiffiffiffiffiffi
Z0Z4

p
is adopted as the bandwidth parameter. A dimensionless

frequency m ¼ ðZ1=Z0Þ
ffiffiffiffiffiffiffiffiffiffiffi
Z2=Z4

p
is taken as the mean frequency [1].

It is common to use a normalized rainflow range z ¼ s=ð2sX Þ in the PDF estimation where s is a
rainflow stress range. The effect of sX is then automatically included and will not be considered
explicitly. In the end, we shall work with three independent variables: the kurtosis of the
probability density a4; the mean frequency m, and the irregularity factor r of the PSD. Finally, we
point out that the choice of a4; m and r as independent variables is totally empirical as is done in
Ref. [2]. Nevertheless, the methodology developed in this paper will be valid for other choices of
independent variables.

3.2. Regression model of the rainflow range PDF

After carefully studying the estimated PDFs of the rainflow range of the simulated stress
processes, we propose the following function form for the PDF of the rainflow range:

f ðzÞ ¼ c1
1

t
e�z=t þ c2

z

a2
e�ðz=aÞ2=2 þ c3

1ffiffiffiffiffiffi
2p

p
bz

e�ðln z=bÞ2=2 ; (9)

where c1; c2; c3; t; a and b are coefficients to be determined using the least squares method. f ðzÞ

contains three common density functions: exponential, Rayleigh and lognormal, which together
can model a broad range of PDFs. The normalization of the density function leads to

c1 þ c2 þ c3 ¼ 1: (10)

Fatigue calculation involves higher-order moments of rainflow ranges. The order of the
moment is related to the slope b of the logarithmic S–N curve. Assume that the slope b is an
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integer for now. We impose the following moment constraint for f ðzÞ:Z
f ðzÞzb dz ¼ c1tbGð1þ bÞ þ c2

ffiffiffi
2

p
a

� b

G 1þ
b

2

� �
þ c3 e

ð1=2ÞðbbÞ2 ¼ mb; (11)

where mb is the bth-order moment of the stress range determined from the rainflow counting. For
common engineering materials, the slope b varies between 2 and 6 [13]. In the examples, we choose
b ¼ 6: If b is a decimal, we impose the moment constraint of an integer order which is the round-
up of b.

The coefficients in f ðzÞ are functions of various characteristic parameters of the stress process
including the kurtosis a4; the mean frequency m, and the irregularity factor r. Our goal is to relate
the coefficients in f ðzÞ to these characteristic variables of the stress process. Note that Eq. (10)
reduces the number of independent coefficients to five while Eq. (11) does not.

3.3. Multi-stage regression

When the coefficients c1; c2; c3; t; a and b of f ðzÞ are assumed functions of the kurtosis,
irregularity factor and mean frequency of the stress process, the regression analysis to determine
f ðzÞ and its coefficients becomes a multidimensional curve-fitting problem. This requires a large
set of data due to the curse of dimensionality in statistics. Moreover, it is difficult to choose a
function form for the coefficients, which is a critical step in regression analysis. With a limited but
reasonable set of data, we propose a multi-stage regression approach to create a functional
relationship between f ðzÞ and its coefficients and the chosen independent variables of the stress
process.

3.3.1. The first stage

In the first stage, we apply the least squares method to determine f ðzÞ for all the stress samples
with different independent variables, subject to constraint (11). This process leads to a collection
of the coefficients c1; c2; c3; t; a and b:

3.3.2. The second stage

Recall that only five of the six coefficients are independent. We need to choose five coefficients
and develop functional relationships with the independent stress variables. We have chosen
c1; c3; t; a and b:

Hereafter, we use b as an example to demonstrate the multi-stage regression method. Fig. 2
shows the collection of the coefficient b from the first stage regression. b is plotted against a
compound parameter m=r: A linear relationship emerges,

b ¼ �1
m

r
þ �2; (12)

where �i ði ¼ 1; 2Þ are unknown parameters, which assume different values for stress processes
with varying kurtosis values. In the subsequent stage, we will fit �i as a function of the kurtosis a4:
The compound parameter m=r has been identified with extensive numerical experimentations, and
helps to reduce an otherwise two-dimensional regression problem with respect to m and r to a one-
dimensional regression. This alleviates the need for a large number of data.
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Fig. 2. Examples of b as a function of m=r for different stress processes. n: represents results from the regression

analysis of the rainflow range distribution. Solid line: prediction from Eq. (14). The kurtosis is (a) a4 ¼ 4; (b) a4 ¼ 7; (c)
a4 ¼ 10; (d) a4 ¼ 14; (e) a4 ¼ 17; (f) a4 ¼ 20:
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3.3.3. The third stage

In this stage of regression, we express �i as a function of the kurtosis a4: From the data,
we observe that �1 increases with the kurtosis almost linearly with a slowly varying slope
and that �2 grows exponentially with the kurtosis [14]. The following regression results are
obtained:

�1 ¼ 0:10551a0:34 � 0:34815; �2 ¼ 0:78883� 0:32239e�0:23263a4 : (13)

Fig. 3 shows the results of the regression of �i as a function of a4:
The final expression for the coefficient b becomes

b ¼ ð0:10551a0:34 � 0:34815Þ
m

r
þ 0:78883� 0:32239e�0:23263a4 : (14)

Fig. 2 shows the predictions of b from Eq. (14). The agreement of the predictions with the
simulated data in a broad range of the variables a4; r and m is excellent.
3.3.4. An iterative procedure
When the regression results for c1; c3; t; a and b are substituted into Eq. (9), the error from the

regression will inevitably propagate to the PDF model of the rainflow range. One way to enhance
the accuracy of the prediction of Eq. (9) is to introduce an iterative procedure to improve the
fitting of the PDF coefficients.
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In the iterative procedure, the regression function of a coefficient is substituted into Eq. (9) as
soon as it is obtained. The least squares analysis of the updated Eq. (9) is conducted to obtain the
remaining coefficients.

For example, we can substitute the value of b from Eq. (14) in Eq. (9). a can be determined by
the multi-stage regression method as in Eq. (15). Then the regression results of b and a are
substituted in Eq. (9) together to determine the remaining coefficients c1; c3 and t: Following this
procedure, we obtain

a ¼ 0:00142a24 � 0:051a4 þ 0:2175

� ð0:03342a24 � 1:159a4 � 1:5925Þ
mðm0:1 � 1Þ

rðr0:7 � 1Þ

� �2

;

t ¼ ð�1:8313a4 þ 68:9345Þ
1:6r � m

r0:1 þ 1

� �2

þ ð0:872a4 � 30:0846Þ
1:6r � m

r0:1 þ 1

� �
� 0:1a4 þ 3:3822;

c1 ¼ maxð0; t½ð0:04406a24 � 1:229a4 � 6:654Þð1:6r � mÞ

� 0:02688a24 þ 0:8025a4 þ 3:953�Þ;

c3 ¼ max 0; ð0:1494a24 � 3:6391a4 þ 28:0776Þ
r

r þ 2m

� �2
"
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� ð0:1323a24 � 3:2923a4 þ 27:9722Þ
r

r þ 2m

� �
þ 0:0293a24 � 0:7475a4 þ 7:0789

#
;

c2 ¼ maxð0; 1� c1 � c3Þ; ð15Þ

where maxð�; �Þ returns the maximum of its arguments.
This iterative process can continue by retaining the functions of some of the coefficients in f ðzÞ

and obtaining the functions for the remaining coefficients by the multi-stage regression method. In
a related study, we have found that the procedure usually converges in a small number of
iterations [15]. Nevertheless, a rigorous proof of convergence of the iterative procedure is elusive
at this time.

3.4. Validation of the regression model

Fig. 1 shows that the prediction from Eq. (9) generally agrees well with the density estimate
from the adaptive kernel method. The prediction is not satisfactory near the origin in some cases,
but is quite accurate in the middle to tail portion of the distribution. This is important for the
fatigue analysis.

In order to validate the multi-stage regression model beyond the set of data on which the model
is developed, a new stress process is generated. The parameters of the process are: sX ¼ 20;
a4 ¼ 12; r ¼ 0:536 and m ¼ 0:426: The rainflow range distribution from the simulated data and
the prediction from Eq. (9) agree as well as in Fig. 1. This validates the proposed regression model
of the probability density of rainflow ranges.
4. Fatigue prediction

One of the important applications of Eq. (9) is to facilitate the calculation of fatigue life. With
the help of Eq. (9), we are able to predict the fatigue life directly from the stress response, thus
bypassing the time-consuming rainflow counting over a large set of time histories.

In the study of fatigue, we adopt the S–N model as [13]

NF Sb ¼ Ks; (16)

where NF is the number of cycles to failure under a sinusoidal stress with constant amplitude. S is
the stress range. b and Ks are material constants. For high cycle fatigue, the Palmgren–Miner
accumulative damage theory can be applied [13]. The average damage per cycle is

DD ¼
1

Ks

Z 1

0

sbrðsÞds; (17)

where rðsÞ is the PDF f ðs=ð2sX ÞÞ of the rainflow range in Eq. (9) obtained by the multi-stage
regression. We assume that the mean of the stress cycle is zero. However, one can modify the S–N
equation to account for the effect of mean stress on fatigue life [16].
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Table 1

Comparison of fatigue predictions by Monte Carlo simulations and Eq. (18)

Stress process Fatigue prediction

Simulation Eq. (18) 90% Confidence interval

(a) 3:937� 106 3:972� 106 ½3:659� 106; 4:198� 106�

(b) 6:678� 106 5:565� 106 ½6:333� 106; 6:958� 106�

(c) 3:487� 107 3:276� 107 ½3:273� 107; 3:680� 107�

(d) 1:843� 108 1:776� 108 ½1:768� 108; 1:905� 108�

The stress processes (a)–(d) refer to Fig. 1.

X. Wang, J.Q. Sun / Journal of Sound and Vibration 280 (2005) 455–465464
Fatigue failure is said to occur when the accumulated damage reaches unity. Assume that the
average damage per cycle is constant. The mean fatigue life in cycles is given by

Nm ¼
1

DD
¼

Ks

ð2sX Þ
bmb

: (18)

Note that mb can be calculated from Eq. (11).
In the numerical examples, we have used the material constants b ¼ 6; and Ks ¼ 3:096� 1019:

To establish a baseline for checking the accuracy of the fatigue life prediction based on the
regression model, we use Monte Carlo simulations to obtain the fatigue life estimate from the raw
time histories of the stress. We first simulate a large number of time histories of the stress process.
The rainflow cycle counting scheme is applied to calculate the fatigue life. The bootstrap method
[17] is used to calculate the 90% confidence interval of the fatigue life prediction.

The stress processes with the rainflow range distribution shown in Fig. 1 are used as examples.
The standard deviation of all of the stress processes is assumed to be 20. The fatigue life from the
Monte Carlo simulation and from Eq. (18) based on the regression model are listed in Table 1. It
can be seen that the prediction from Eq. (18) falls in the 90% confidence interval or slightly
outside the interval but on the conservative side, and therefore agrees well with the result of
Monte Carlo simulation statistically.

Another example is presented here to show the prediction ability of Eq. (18) by using the new
stress process with the parameters sX ¼ 20; a4 ¼ 12; r ¼ 0:536 and m ¼ 0:426: The mean fatigue
life from the Monte Carlo simulations is 8:436� 106 cycles with a 90% confidence interval:
½7:792� 106; 8:916� 106�: The fatigue life predicted from Eq. (18) based on the regression model
is 7:744� 106: It is very close to the lower bound of the 90% confidence interval. Thus, Eq. (18)
provides conservative and reasonably accurate fatigue life estimates.
5. Concluding remarks

A multi-stage regression method has been proposed to obtain an empirical PDF model for the
rainflow ranges of non-Gaussian stress processes. The proposed PDF model captures the non-
Gaussian properties of a wide range of stress processes characterized by four parameters: standard
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deviation, kurtosis, irregularity factor and mean frequency. A higher order moment constraint is
proposed to improve the accuracy of the regression model of the rainflow stress range PDF. The
regression model has been validated with simulated stress processes that have not been used in the
regression analysis. The resulting closed-form empirical PDF of rainflow ranges enables us to
carry out fatigue analysis efficiently and accurately. The fatigue life predictions based on the
regression model agree very well with those from extensive Monte Carlo simulations.
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